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GENERAL ARRANGEMENT OF REGIMES FOR SPATIAL LOCAL FLOWS 

V. V. Bogolepov UDC 532.526.2 

Different local features at the surface of a body are breaks or sharp changes in 
boundary conditions, separation or joining of a flow, irregularities, etc., and 
they may have a marked effect on local and global characteristics of flow over it 
[i]. This situation stimulates continued interest towards to flow in local regions, 
which apart from considerable practical importance, often exhibit considerable theo- 
retical novelty (see, e.g., [2-6], where a systematic study was carried out of pla- 
nar local regions of flow). However, the majority of local regions are spatial, 
and whereas in studying flat regions considerable success have been achieved, for 
spatial regions only individual solutions have been obtained, often using consider- 
able simplifications [7-19]. In addition, due to the absence of systematic studies 
it is difficult to determine the boundaries for existence of different flow regimes 
in local spatial regions, and limiting transitions which make it possible to change- 
over from one flow regime to another. In this work systematic studies are carried 
out for flow regimes in local spatial regions for each of the boundary problems for- 
mulated, the main properties of their solution are studied, and a general classi- 
fication for the arrangement of flow regimes is built up. 

I. Consideration is given to flow over a flat semi-infinite plate by a uniform sub- 
sonic or supersonic flow of viscous gas with Math numbers (M~ - i) ~ 0(i) or more, but for 
precritical Reynold's numbers. Let there be in the surface of the plate at a certain dis- 
tance s from its leading edge a small spatial protuberance or hollow (Fig. i). A steady- 
state solution of the Navier-Stokes equations is constructed for a spatial region of dis- 
turbed laminar flow with Re~:=p~u~Z/~ =8 -~ tending towards infinity. Here p~, u~, and ~ 
are values of density, velocity, and dynamic viscosity coefficient in an undisturbed uniform 
running flow. Subsequently we shall use only dimensionless values, and for this all linear 
dimensions are related to s pressure p is related to p~u~, enthalpy h is related to u~, and 
the rest of the flow functions are related to their values in an undisturbed uniform running 
flow. 

Considering the dimensions of a small irregularity, it is assumed that its typical thick- 
ness a in order of magnitude is less or equal to the typical width of an undisturbed boundary 
layer on a plate in this area, i.e., a~SNO~), and its typical extent b in order of value 
is greater or equal to a and less than or equal to unity, i.e., a~b~!. The nature of the 
irregularity width c in order of magnitude may be greater or equal to a, i.e., c~a. With 
a > b or a > c flow may have the same features as that with a ~ b or a ~ c, and only the 
longitudinal or transverse dimensions of the disturbed flow region will be determined by the 
value of a. It is evident that a, b, c > e = (for flow regions in which one of the character- 
istic dimensions is commensurate in order of value to the typical length of free flow of a 
gas molecule ~O(e2), Navier-Stokes equations will not be valid), i.e., characteristic thick- 
ness a, extent b, and width c of an irregularity are satisfied by the relationships 

e 2 < a ~ 8 ~  a ~ < b ~ t ,  a<<c. (i.i) 

T h i s  means t h a t  t h e  t e s t  r e g i o n  f o r  m e a s u r e m e n t  o f  v a l u e s  o f  a ,  b ,  and c i s  l i m i t e d  by bound-  
a r i e s  o f  t r u n c a t e d  p y r a m i d  ABCDEFGH ( F i g .  2 ) .  Among i r r e g u l a r i t i e s  w i t h  c h a r a c t e r i s t i c  d i -  
m e n s i o n s  ( 1 . 1 )  c o n s i d e r a t i o n  i s  o n l y  g i v e n  t o  t h o s e  wh ich  i n i t i a t e  c o n s i d e r a b l e  l o c a l  p r e s -  
s u r e  g r a d i e n t s  3p /~x  > 1 o r  3p/3Z > 1 o r  f o r  wh ich  in  t h e  d i s t u r b e d  f l o w  r e g i o n s  c o n v e c t i v e  
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and diffusion terms of Navier-Stokes equations (e.g., 
large. 

puSu/Sx > 1 or ez~82u/Sy z > i) are 

2. First let c > b, i.e., consideration is given to flow over irregularities of the 
trench or embankment type 8S<a ~b<c which are wide in the transverse direction. It is 
evident that in this case spreading to the sides will be small and the basic estimates for 
flow functions in disturbed regions over such irregularities will conform with estimates for 
the case of flow over flat irregularities. 

If the thickness of an irregularity a is so small that disturbance of the flow functions 
is only created due to reaction of the irregularity with the boundary subsonic shear part of 
the undisturbed boundary layer on the plate, then in a layer of nonlinear disturbances close 
to the surface of the irregularity, where disturbance of the longitudinal velocity in order 
of value is equal to the velocity itself u ~ A u . . ~ A p V 2 ,  

u N Au  .-. O(a/a), Ap  .-. O(a2/~).  ( 2 . 1 )  

I n  t h e  l i m i t i n g  c a s e  f o r  " t h i c k "  i r r e g u l a r i t i e s ,  when p r e s s u r e  d i s t u r b a n c e  i s  c r e a t e d  
due to  a c t i o n  o f  t h e  i r r e g u l a r i t y  w i t h  an u n d i s t u r b e d  u n i f o r m  runn ing  f low,  f rom normal  t h e o r y  
f o r  s m a l l  d i s t u r b a n c e s  i t  f o l l o w s  t h a t  

Ap  ,., O 0 / b  ). ( 2 . 2  ) 

In  t h e  t r a n s i t i o n a l  c a s e ,  when bo th  e s t i m a t e s  a r e  v a l i d  f o r  d i s t u r b a n c e  of  p r e s s u r e  ( 2 . 1 )  
and ( 2 . 2 ) ,  and d i s t u r b a n c e  of  t h e  f low f u n c t i o n  i s  c r e a t e d  due t o  r e a c t i o n  o f  t h e  i r r e g u l a r i t y  
w i t h  a l l  o f  t h e  boundary  l a y e r  on t h e  p l a t e ,  

ab .-~ 0(~2). ( 2 . 3 )  

If the layer of nonlinear disturbances is viscous, then its typical thickness6xNO (sbXl2/ 
Apl/4), and taking account of the fact that close to the surface of the body flow functions 
change in proportion to the distance from it (e.g., u ~ y/e), for all regimes of flow over 
irregularities the following will be fulfilled 

8, .-. O(ebi/3), Ap  ~ O(b~/S). ( 2 . 4 )  

Estimates (2.1)-(2.4) make it possible to build up disturbed flow in the plane x, y 
over irregularities that are planar or extensive in the transverse direction. These studies 
were carried out in [3] where a classification scheme is given for the corresponding flow 
regimes (Fig. 3). 

The region for change in thickness a and extent b for irregularities that are wide in 
the transverse direction is bounded by polygon GCJKL. Lines LK(a,~O(eb2/3)) and KJ(aNO(b~)) 
cut off flow regimes with which small pressure gradients 8p/Sx are initiated. 

In region GCNKL disturbance of low functions is only created due to reaction of an ir- 
regularity with the boundary-wall part of the boundary layer on a plate, and here estimate 
(2.1) is valid. 

In region CJKN disturbance of the flow functions is created due to reaction of the ir- 
regularity with a uniform running flow, and here estimate (2.2) operates. 

On lines CN (a.~O(~2/b)) and NK (b~O(e3/4)) a change in displacement thickness of the 
boundary-wall region of disturbed flow occurs as a result of reaction of the irregularity 
with the boundary-wall part of the boundary layer on a plate, and pressure disturbance is 
created due to reaction of the effective thickness of the irregularity (strictly the thickness 
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of the irregularity plus the displacement thickness of the boundary-wall region) with a uni- 
form running flow. 

On lines MN (a..~O~bl/S)) and Nf(aNO(bS/3)) the irregularity causes viscous nonlinear dis- 
turbances, and here disturbance of frictional stress ~xy in order of value equals its basic 
value in an undisturbed boundary layer at the plate surface. 

On line GM~..~O(b)) flow in the undisturbed region is described by a Stokes equation, 
and at point M (a'~bfgO(s3/2)) it is described by Navier-Stokes equations for an incompres- 
sible gas [20]. on line MN a compensation regime is realized for flow over irregularities 
[21], and at point lV(a~O (e5/4), b N O ( e 3 / 4 ) ) a  free reaction regime is realized [2]. On line 
NI flow over "thick" irregularities is described by Prandtl boundary layer equations for an 
incompressible gas with prescribed pressure distribution [22]. 

Above line MNI and in region NCIN irregularities cause nonviscous nonlinear disturbances, 
and in this way close to the surface of irregularities it is necessary in addition to consider 
a viscous sublayer. Lower down, in region GMNIJKL, irregularities cause viscous linear dis- 
turbances. 

An estimate for velocity component w in the transverse direction z is obtained from an 
equation for conservation of a transverse pulse puaw/Sx - ap/~z, and taking account of esti- 
mates (2.4) in a layer of viscous nonlinear disturbances: 

w , . .  O(b4/~/c), a w / a z  ,-, o(b4/3/c2) ~ (b2~2)au/Ox. ( 2 . 5 )  

R e l a t i o n s h i p s  ( 2 . 5 )  i n d i c a t e  t h a t  i n  t h e  c a s e  b e i n g  c o n s i d e r e d  w i t h  c > b f o r  a l l  o f  t h e  
r e g i m e s  b e i n g  s t u d i e d  f o r  f l o w  o v e r  i r r e g u l a r i t i e s  t h e  who le  s e t  o f  e q u a t i o n s  d e s c r i b i n g  t h e  
s p a t i a l  r e g i o n  o f  d i s t u r b e d  f l o w  b r e a k s  down i n t o  a s e t  o f  e q u a t i o n s  d e s c r i b i n g  f l o w  o v e r  
f l a t  s e c t i o n s  o f  i r r e g u l a r i t i e s  c o n t a i n i n g  c o o r d i n a t e  z a s  a p a r a m e t e r ,  and i n t o  an e q u a t i o n  
f o r  c o n s e r v a t i o n  o f  a t r a n s v e r s e  p u l s e  ( l i n e a r i z e d  in  r e l a t i o n  t o  v e l o c i t y  componen t  w, i . e . ,  
w i t h o u t  t e r m  0wSw/Sz in  t h e  c o n v e c t i v e  o p e r a t o r ) ,  which  may be s o l v e d  s e p a r a t e l y .  

I t  i s  e v i d e n t  t h a t  f l o w  o v e r  i r r e g u l a r i t i e s  t h a t  a r e  wide  in  t h e  t r a n s v e r s e  d i r e c t i o n  
e x h i b i t s  t h e  same f e a t u r e s  a s  f o r  f l o w  o v e r  f l a t  i r r e g u l a r i t i e s .  

3. With  an i n c r e a s e  in  t h e  w i d t h  o f  an i r r e g u l a r i t y  c up t o  c ~ 0 ( b )  e s t i m a t e s  ( 2 . 1 ) -  
( 2 . 5 )  r e m a i n  in  f o r c e ,  o n l y  now in  t h e  l a y e r  v i s c o u s  n o n l i n e a r  d i s t u r b a n c e s  o f  t r a n s v e r s e  
v e l o c i t y c o m p o n e n t  w a r e  e q u a l  i n  o r d e r  o f  v a l u e  t o  t h e  l o n g i t u d i n a l  v e l o c i t y  componen t  u: 

w ,"~u "-" 0(bl /3) ,  ( 3 . 1 )  

s t r e s s  component  ~yz i s  e q u a l  i n  o r d e r  o f  v a l u e  t o  s t r e s s  ~xy ,  and t h e  s e t  o f  e q u a t i o n s  de -  
s c r i b i n g  t h e  s p a t i a l  r e g i o n  o f  d i s t u r b e d  f l o w  i s  n o t  b r o k e n  down. 

E s t i m a t e s  ( 2 . 1 ) - ( 2 . 4 )  and  ( 3 . 1 )  make i t  p o s s i b l e  t o  c o n s t r u c t  a s o l u t i o n  f o r  N a v i e r -  
S t o k e s  e q u a t i o n s  f o r  t h e  c a s e  o f  f l o w  o v e r  n a r r o w  i r r e g u l a r i t i e s  o f  t h e  c i r c u l a r  p i t  and 
mound t y p e  e ~ < a ~ b . - . c ~ i .  I n  l a y e r  3 v i s c o u s  n o n l i n e a r  d i s t u r b a n c e s  i n t r o d u c e  t h e  f o l -  
l owing  i n d e p e n d e n t  v a r i a b l e s  and a s y m p t o t i c  e x p a n s i o n s  f o r  f l o w  f u n c t i o n s :  

x = bx3, y = ebl/3y3, z = bz3, 

u = bl/3u,  -]- . . . .  ' v  ----(e/bl/a)v3 ~ . . . .  w = b*13w3 + ..., ( 3 . 2 )  

p=t/?M~+b2/aps+ . . . .  p =  p ,  + . . . ,  ~ t=  ~,~ + . 

Here  y i s  t h e  r a t i o  o f  s p e c i f i c  h e a t  c a p a c i t i e s ;  i n d e x  w r e l a t e s  t o  v a l u e s  a t  t h e  p l a t e  s u r -  
f a c e  in  t h e  p o i n t  where  t h e  i r r e g u l a r i t y  i s  l o c a t e d .  

S u b s t i t u t i o n  o f  e x p a n s i o n  ( 3 . 2 )  i n  N a v i e r - S t o k e s  e q u a t i o n s  and c o m p l e t i o n  o f  t h e  l i m i t -  
i ng  t r a n s i t i o n  w i t h  ~ + 0 i n d i c a t e s  t h a t  t o  a f i r s t  a p p r o x i m a t i o n  r e g i o n  3 i s  d e s c r i b e d  by 
c o m p l e t e  N a v i e r - S t o k e s  e q u a t i o n s  f o r  an i n c o m p r e s s i b l e  g a s  w i t h  a ~ b N c N O(ea/2) 

=0, -- 

[ 0% 8v s 8vsl OPs-- 
p,~ [us ax--- 8 + v, --ay, H- ws~-~8 ! -F ay,----. ~t.V:v3, (3.3) 

�9 / am 8 am, aw,~ lap3 
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or Stokes equations with e ~<a~b~c<e~l ~ 

Ou s 0% " Ow s _ 8Ps OP s 

(3.4) 
aPs --_ [~wViws~ V 2 0 2 a ~ 0 2 

At the surface of the irregularity Y3 = f(x3, z3) normal conditions should be fulfilled for 
attachment and nonflow 

u3 = ~'3 = u,~ = 0 (v~ = l(x3, z0), (3.5) 

external boundary conditions are obtained from combination with a solution for an undisturbed 
boundary layer on a plate 

y ~  Ay.,, ~, ~ ,  p ~ 0  (x~ + v~ + ~ . ~  oo), (3.6)  

where A = (Su0/Syi) w [y = eyi, u0(yi) is the profile of velocity u in an undisturbed bound- 
ary layer on a plate]. It is well known that (3.3), (3.5), (3.6) or (3.4)-(3.6) are boundary 
problems of the elliptical type. 

If e3/2< b ~ I, then flow in layer 3 to a first approximation is described by Prandtl 
spatial boundary layer equations for an incompressible gas 

au s at, 3 Ow~ [ Ou 3 au 8 Ous' ~ Ops O~us 

(3.7)  
{ Ow3 aw n aw3~ Op3 02w3 

0. p,otu,  + v . - -  + = = 0y. od  

At t h e  s u r f a c e  o f  i r r e g u l a r i t i e s  whose t h i c k n e s s  in  o r d e r  o f  v a l u e  e q u a l s  t h e  t h i c k n e s s  
o f  l a y e r  3 (a ,,-, O(eb~/3)), b o u n d a r y  c o n d i t i o n s  ( 3 . 5 )  a r e  f u l f i l l e d ,  and f o r  " t h i c k "  i r r e g u l a r -  
i t i e s  w i t h  e b ! / ' J <  a ,-, O(bS/3) t h e  f o l l o w i n g  b o u n d a r y  c o n d i t i o n s  a r e  f u l f i l l e d  

Us = v3 = zvs = 0 (V3 = 0). (3.8) 

Here coordinate Y3 is reckoned along the normal from the surface of the irregularity. 

Initial boundary conditions are obtained from combination with a solution for an undis- 
turbed boundary layer on a plate 

u s - + A y a ,  v3, we, p ~ - + O  (x3--~--co, z~---)-+-co), ( 3 . 9 )  

and in order to find external boundary conditions it is necessary to consider in addition 
region 2 whose characteristic thickness g ~ O(b) with ca/2 < b < e or y-~ 0(~) with e ~ b ~, I. 
Therefore, in region 2 in the first case the following independent variables and asymptotic 
expansions of flow functions are valid: 

x~ = x3 = x/b ,  Y'z = y/b ,  z ,  ~-- z3 z/b, 

u = (b/e)Ay~ + (e/bl/~)u~o + p = (e/b*/~)v22 -{- = ..., .... p 9~, + .... ( 3 . 1 0 )  

w = (~/b ~/~) wi~ + . . . .  p = 1/%, M i  + b~ . . . .  

and in the second case variables and expansions in the form 

x~ = x3 -~ x /b ,  Y2 = y /e ,  z~ = z3 = z/b, 

u = uo(y~) + b'/~un + ' ,~ /~  ,, ui~ + . . . ,  v =  b~/'~v~ + (~/b~/3)v~ + . . . ,  ( 3 , 1 1 )  
w =  b~/3wii  + . . . .  p = t / y M ~ + b ~ / 3 p ~ + . . . ,  

P = Po(Y~) + b~/3,a.2~ -~- b2/a9.22 -~- . . . ,  h ---- ho(y.,.) + b'/ahzi + . . . ,  

are valid, where profiles of flow functions in an undisturbed boundary on a plate are labeled 
with index 0. Substitution of expansions (3.10) of (3.11) in Navier-Stokes equations and 
completion of the limiting transition with ~ + 0 and es/~ b ~ I indicates that in both cases 
flow in region 2 to a first approximation will be described by linearized Euler equations 
relating to the running flow [u = (b/e)Ay2 or u = u=(y0) ]. In addition, with ~3/~<b<~ ~/~ 
use of expansions (3.10) or (3.11) leads to the same basic result 

ApWv,n + Opz~Ox2 ~ 0 (y2 --~ 0). ( 3 . 1 2 )  
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The combination of expansions in regions 2and 3 with the use of relationship (3.12) makes it 
possible to obtain external boundary conditions 

u 3 - * A y a ,  w3-*O, Apwv3 + a p 3 / a x a - + o  ~ 3 - - . 0 0 ) .  (3.13) 

The bounda ry  p r o b l e m  ( 3 . 5 ) ,  ( 3 . 7 ) ,  ( 3 . 9 ) ,  and ( 3 . 1 3 )  d e s c r i b e s  a s p a t i a l  c o m p e n s a t i o n  
r eg ime  o f  f l o w  o v e r  i r r e g u l a r i t i e s  w i t h  a ~ O(eb*/~), e 3 / 2 < b < e  3/4, c ~ O ( b ) ,  whose i m p o r t a n t  
d i f f e r e n c e  f rom t h e  c o r r e s p o n d i n g  p l a n a r  r eg ime  f o r  f l o w  [21] i s  p r o p a g a t i o n  o f  d i s t u r b a n c e s  
upwards  t h r o u g h  t h e  f l ow  [ 1 9 ] .  

With b ~ 0(~/4) a l i n e a r i z e d  s e t  o f  E u l e r  e q u a t i o n s ,  d e s c r i b i n g  f l o w  in  r e g i o n  2, a l l o w s  
partial integration 

P, = P2@2, z2), uzt = Dduo/dy2, v2~ = -uoaD/ax2, D = D@2, Z2). ( 3 . 1 4 )  

Combina t ion  o f  e x p a n s i o n s  in  r e g i o n s  2 and 3 w i t h  t h e  u s e  o f  r e l a t i o n s h i p  ( 3 . 1 4 )  g i v e s  ex -  
t e r n a l  boundary conditions in the form 

u3 --* A(Y3 ~ m) ,  Wa ~ 0 (Y3 -~ ~ ) .  (3~ 15) 

For "thick" irregularities with a ..~ 0(b5/3), e3/4< b ~ e 3/5 in region 2 the following inde- 
pendent variables and asymptotic expansions of flow functions are introduced: 

x2 = ~  = z / b ,  y = e y 2 + b S / q @ 2 ,  z2) + . . . ,  z2 = z 3 = z / b ,  

U = ~ 2 )  + b213u2 + . . . .  v = bZ/3v2 + . . . .  w = bZ/3w2 + . . . .  
(3.16) 

~ ~" ~ .o ...~ p /? M ~  + b~/~p, + ., P = Po (Yz) + b2/~P~ + 

h = ~ ( y , )  + b*/~h, + . . .  

Substituting of expansions (3.16) in Navier-Stokes equations and completion of the limiting 
transition with e + 0 and e~/4< b~ e 3/5 indicates that to a first approximation flow in region 
2 will again be described by linearized Euler equations, from which it emerges that 

P2 = p2(x2, z2), v2 = uoO//#x2, (3.17) 

and combination of expansions in regions 2 and 3 leads to external boundary conditions 

u3 --~ Ay3,  wa -+0 (y3"-~ oo). (3.18) 

Now in order to determine pressure disturbances with e 3/a ~ b ~ 83/s it is necessary to 
consider disturbed region 1 of an equilibrium running flow, where new independent variables 
and asymptotic expansions of flow functions are valid 

x l  = x ,  = x8 = . x / b ,  Yl = y /b ,  z ,  = z2 = z3 = z/b,  

u ! -4- b~/3u, -l- . . . .  v = b2/3t~l -~ .... w = b2/3wl -~ ..., p = I ~- b~/~pl + . . . ,  ( 3 . 1 9 )  

p = I/?M~ + b~/ 'p ,  + . . . , h  = t/(? - -  i) M i +  b~)~h~ §  

S u b s t i t u t i o n  o f  e x p a n s i o n s  ( 3 . 1 9 )  in  N a v i e r - S t o k e s  e q u a t i o n s  and c o m p l e t i o n  o f  t h e  l i m i t i n g  
t r a n s i t i o n  w i t h  ~ + 0 and e s / 4 ~  b ~ e3/5 i n d i c a t e s  t h a t  t o  a f i r s t  a p p r o x i m a t i o n  p r e s s u r e  d i s -  
t u r b a n c e  i n  r e g i o n  1 i s  d e s c r i b e d  by s o l u t i o n  o f  b o u n d a ry  p r o b l e m  

+ a,-T , ,  p, 0 
(3.20) 

p~(x~, o, z,) = p..(x~, z~) = p~(x3, z~), 

for which the internal boundary condition with bNO(8S/4) is 

apl/a~, =a~D/az[ �9 (yl = o) 

or 

with 

(3.21) 

ap,lOy, = -- a~//az~ (Yl = 0) (3.22) 

s3! 4 < b ~< eslt 

Consequently, with a ~ O(8514), b-~ c-~ O(8 s/4) flow over irregularities is described by com- 
bined solution of boundary problems (3.5), (3.7), (3.9), (3.15) and (3.20), (3.21). This 
region for flow over irregularities is a spatial analog of a two-dimensional regime for free 
reaction [2], and its individual properties have been studied in [9, i0, 13-15]. 
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For the case of flow over "thick" irregularities with a'~O(bS/3), e314<b~c~8 ~15 the 
distribution of pressure disturbance is determined by solving (3.20) and (3.22). Then it is 
necessary to solve equations for the Prandtl spatial boundary layer for an incompressible gas 
(3.7)-(3.9) and (3.18) with a prescribed pressure distribution. 

Complete systematic analysis of regimes for flow over narrow irregularities with c,-~O(b) 
indicates that for these irregularities the previous classification scheme for two-dimen- 
sional flow regimes given in Fig. 3 is valid. 

4. Now let c < b, i.e., consideration be given to flow over irregularities which are 
narrow and extended in the direction of flow e=<a<~c<b<~1. It is evident that in this 
case spreading of gas to the sides will have a considerable effect on the amount of distur- 
bance of flow functions around irregularities. 

If irregularity thickness a is so small that disturbance of flow functions is only 
created as a result of reaction of the irregularity with the boundary-wall part of the bound- 
ary layer on the plate, then in a layer of nonlinear disturbances 

u -.. au ~ O(als). (4.1) 

Since flow should have an essentially spatial character, then from equation for continuity 
and conservation of a transverse pulse, we obtain 

w ..~ Aw ~. O(ae/zb), Ap ~. w 2 N O(ac/eb)~. (4.2) 

In order to study the reaction of an irregularity with a uniform running flow, it is 
necessary first to consider a disturbed region with typical dimensions e<xNy..~z...b<,i. 
However, in the scale of this region an irregularity is a line without thickness or width. 
Therefore, this region remains undisturbed, and it is necessary to consider region 1 of dis- 
turbed flow with typical dimensions e < x N b < , l ,  ~ < y ~ z - . ~ c < b ~ t .  During reaction of a 
uniform running flow with an irregularity in this region a vertical velQeity is introduced 

v ~ O~/b). (4.3) 

From the continuity equation we have an estimate for disturbance of velocities 

A u  ,'." O(a/@,  w ~ O(a / b ) ,  (4.4) 

and from the equation for conservation of the transverse pulse (considering that disturbance 
of flow in region 1 should be described by linearized equations relating to a uniform running 
flow, and therefore 8w/Sx ~ 8p/Sz), we have an estimate for pressure disturbance 

A P  ~ O(ac /b i ) .  (4.5) 

In the intermediate case when disturbance of flow functions is created as a result of 
reaction of an irregularity with the whole boundary layer on a plate and estimates (4.2) and 
(4.5) are valid simultaneously, 

ac ~ O(e=). (4.6) 

Now it is easy to obtain an estimate for the thickness of the layer of viscous nonlinear 
disturbances 61 and pressure disturbance Ap for all of the regimes of flow over narrow irre- 
gularities: 

61 ~ O(ecl /Z/  A p  1/4) ~ O(ebl /3) ,  h p  ~ 0~2 /b4 /3 ) .  (4.7) 
Estimates (4.1)-(4.7) make it possible to construct a solution of Navier-Stokes equations 
for the case of flow over narrow irregularities extended in the flow direction. 

In layer 3 viscous nonlinear disturbances introduce the following independent variables 
and asymptotic expansions for flow functions: 

x = bxs, y = ebl/Sy3, z = cz3, 

U = bl13u3 + . . . .  v = (e/bl/3)l,a + . . . .  w = ~ /b i /a )wa  + . . . .  (4.8) 

p = t / y M ~  + (cZ/b ' / " ) p a +  . . . ,  P = Pw + . . . .  ~ = ~,o + . . .  

Substitution of expansions (4.8) in Navier-Stokes equations and completion of the limiting 
transition with e + 0 indicates that region 3 with a..~e~ O(ebl/3~, ~<b~<lis described to 
a first approximation by Navier-Stokes equations for an incompressible gas which are para- 
bolic in direction x 
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au~ Ov~ at% [ au@ 0% Ou3 ~ / 0~ % a2ua l 
or;+ N = o, 

.( oo, oo, o,, 
u'N + " � 9 0  + T, j' 

and  w i t h  e ~ < a  ~ c < ebW~, e ~- < b ~ t by  S t o k e s  e q u a t i o n s  [7 ]  ( i n  t h i s  c a s e  c o n v e c t i v e  t e r m s  
are dropped in Eq. (4.9). It is evident that in solving the boundary problem (3.5), (3.6), 
and (4.9) transfer of disturbances upwards through the flow is absent. 

If eb ~/~ < c < b, then flow in layer 3 to a first approximation will be described by equa- 
tions for a Prandtl spatial boundary layer for an incompressible gas without the term 8p/Sx 
in the equation for conservation of a longitudinal pulse 

=o,  
0~3 ~ a~3 - -  (4.  i 0 )  

aw, ow, 1 o'-., 

Solution of Eqs. (4,10) should satisfy i n i t i a l  boundary conditions (3.9) and the conditions 
at the surface of an irregularity (3.5) with a ~ O(eb ~m) or (3.8) [with eb ~/~ < a ~ O(b2/~c) ]. 

In order to find external boundary conditions it is necessary now to consider region 2 
with characteristic thickness y~ O(c) with gb ~/~<c<e,e s]~<b~i or y.~ 0(8) ore~c<b~l. 
i. Therefore, in the first case in region 2 the following independent variables and asymp- 
totic expansions of the flow functions are introduced 

x~ = x3 = x /b ,  y= = y /c ,  z 2 = z~ .=  z/c,:  

u = (c/e)Ay~--]- (eb~i~/c)u~ + . . . ,  v = (Ub~m)v~  + . . . ,  ( 4 . 1  1)  

w = (e /b  ~l ')  w~ + . . . ,  p---- t /yM~ + (c~/b '/~) p~ + . . . ,  p ---- p,~ + ...~: 

and in the second 

x~ = xa = x / b ,  y~ = y/s,: z~ = z31= Z/c, 

u ---- uo(Y2i + b l / S u ~ r +  b~13u2~ -}- . . . ,  v = (c/blm)v~l  + (e/bl/~)V2~. + . . ,  

w = (c/b '/') tv2~ + . . . .  p ---- t/7M~ + (c~/b ' / ' )  p~ + . . . .  

P = Po(Y2) + b~/SP~ + b~/~P2~ + . . . .  h = ho(y~) + b~/Sh3~ q- . . .  

(4.12) 

Substitution of expansions (4. ii) and (4.12) in Navier-Stokes equations and completion of 
the limiting transition with ~ e 0~and 83/2< b ~, I indicates that in both cases flow in re- 
gion 2 to a first approximation will be described by Euler equations without the ~p/~x term 
in the equation for conservation of a longitudinal pulse linearized relative to the running 
flow [u = (c/e)Ay 2 or u = u0(y2)]. In addition, with ebl/3<c<e/bU3,:8313<b~<l use of 
expansions (4.11) or (4.12) leads to the same basic result: v22 -+0 .(Y2 -+0), then external 

boundary conditions take the form 

u - ' ~ A y ~ ,  v~, w s " ~  0 (y~-+ oo). (4.13) 

The boundary problem (3.5), (3.9), (4.10), and (4.13) describes a spatial compensation 
regime for flow over narrow irregularities with characteristic dimensions a N O(eb~/3), ~312< 
b ~ I, a< c < e/b ~/8 . Here due to absence of the ~p/ax term there is no transfer of distur- 
bances upwards through the flow, as with a compensation regime for flow over flat irregulari- 
ties [21]. With c N O(e/b ~/3) for region 2 relationships (3.14) are again valid, and then 
(3.15) will be the external boundary conditions. 

For "thick" narrow irregularities with a -.. 0(b2/3c), ' e314 < b ~ I, e/b I/~ < c < e/b ~/3 in re- 
gion 2 the following independent variables and asymptotic expansions of flow functions are 
introduced: 

x~ = x3 = z/b, ~ = ey2 + bWSef@2, %) + ..., z2 = z3 = z/c, 

u = uo(y2) -4- b~/3u2 @ . . . .  v = (c/b1/3)L'2 @ . . . .  w - (c/bl/~)w2 + . . . .  
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p = p0 (y~) + b~/3p~ + . . . .  h = h0 (y~) + b~J3h~ + . . . .  
(4.14) 

p =  l/?M~ § (cZ/b 4/8) p~ + . . .  

S u b s t i t u t i o n  o f  e x p a n s i o n s  ( 4 . 1 4 )  in  N a v i e r - S t o k e s  e q u a t i o n s  and c o m p l e t i o n  o f  t h e  l i m i t i n g  
t r a n s i t i o n  w i t h  g + 0 and e 3 / 4 < b ~ l  i n d i c a t e s  t h a t  t o  a f i r s t  a p p r o x i m a t i o n  in  r e g i o n  
2 r e l a t i o n s h i p s  ( 3 . 1 7 )  a r e  v a l i d ,  and t h e  s o l u t i o n  in  r e g i o n  3 s h o u l d  s a t i s f y  e x t e r n a l  bound-  
a r y  c o n d i t i o n s  ( 3 . 1 8 ) .  

F u r t h e r m o r e  i t  i s  n e c e s s a r y  t o  c o n s i d e r  d i s t u r b e d  r e g i o n  1 f o r  a u n i f o r m  r u n n i n g  f l o w  
w i t h  c h a r a c t e r i s t i c  d i m e n s i o n s  x,-.,O(b), y N  z NO(c) ,  e 3 / 4 ~ b ~ l ,  e / b l l 3 ~ c ~ e / b  21~, i n  wh ich  t h e  
f o l l o w i n g  i n d e p e n d e n t  v a r i a b l e s  and a s y m p t o t i c  e x p a n s i o n s  o f  f l o w  f u n c t i o n s  a r e  v a l i d  

x l  = x~ = ~ = x / b ,  Y l  = Y ~  z~ = s i  = z 3 = z ~ ,  

u = i + b~/Sul + :..~ v = (c/blla)vl + ..., w =(clbl/~)w 1 + .... ( 4 . 1 5 )  

p = i + (c~b '/a) Pl + . . . .  h = i/(? - -  i) M~ + (c~/b 'la) h, + . . . ,  

p = i/?M~ + (cilb 'la) P l . . .  

S u b s t i t u t i n g  o f  e x p a n s i o n s  ( 4 . 1 5 )  in  N a v i e r - S t o k e s  e q u a t i o n s  and c o m p l e t i o n  o f  t h e  l i m i t i n g  
t r a n s i t i o n  w i t h  r ~ 0 and e a / 4 < b ~ l  i n d i c a t e s  t h a t  t o  a f i r s t  a p p r o x i m a t i o n  p r e s s u r e  d i s -  
t u r b a n c e  in  r e g i o n  1 i s  d e s c r i b e d  by s o l u t i o n  o f  t h e  b o u n d a r y  p r o b l e m  

2 2 O~pl/~y~ + 0  pJOzl = O, pl---~O (x~ + y~ + z~--.oo), ( 4 . 1 6 )  

pl(Xl, O, g l ) =  P2~2, g i ) =  P3(Xa, Zs), 

which  s h o u l d  s a t i s f y  i n t e r n a l  b o u n d a r y  c o n d i t i o n  ( 3 . 2 1 )  w i t h  (c  ,~, O(e/bl/a ) or  ( 3 . 2 2 )  w i t h  e/b l /3< 
c ~ , e / b  ~/~. I t  i s  e v i d e n t  t h a t  s o l u t i o n  o f  b o u n d a r y  p r o b l e m s  ( 3 . 2 1 ) ,  ( 4 . 1 6 ) ,  o r  ( 3 . 2 2 ) ,  ( 4 . 1 6 )  
does  n o t  depend  on ~t~, i n  s p i t e  o f  t h e  f a c t  t h a t  i t  d i s t u r b s  r e g i o n  1 o f  a u n i f o r m  r u n n i n g  
flow. 

Combined solution of boundary problems (3.5), (3.9), (3.15), (4.10) and (3.21), (4.!6) 
describe flow over a narrow irregularity with characteristic dimensions =~O(ebl/3), ~/4<b~|, 
c~O(e/b I/3) in a free reaction regime. Here due to the absence of the term 8p/Sx there is 
no transfer of disturbances upwards through the flow. 

In the case of flow over "thick" narrow irregularities e~O(bi/ac)~e~/~<b~i, ebb/3< 
c~e/b~/~ the distribution of pressure disturbances is determined by solving (3.22), (4.16). 
Then in region 3 it is necessary to solve the boundary problem (3.8), (3.9), (3.18), (4.10) 
with prescribed pressure distribution. 

5. Shown in Fig. 4 in plan are surfaces in which spatial irregularities with character- 
istic thickness a, extent b, and width c cause viscous nonlinear disturbances: APNMO is aN 
O(eb~/~), PQIM is a',--,O(b~/~), and AQP is a,-,O(b~/~c). Thicker irregularities cause viscous 
n o n l i n e a r  d i s t u r b a n c e s ,  and l e s s  t h i c k  i r r e g u l a r i t i e s  c a u s e  v i s c o u s  l i n e a r  d i s t u r b a n c e s .  

The l e a s t  d e g e n e r a t e  r e g i m e s  f o r  f l o w  o v e r  s p a t i a l  i r r e g u l a r i t i e s  a r e  r e a l i z e d  w i t h  
b , , - , O ~ ) .  On l i n e / / O , ( e ~ - < a N b , - ~ c  <ea/~) f l o w  o v e r  i r r e g u l a r i t i e s  i s  d e s c r i b e d  by S t o k e s  
e q u a t i o n s ,  and a t  p o i n t  O (a,--,b ~ c,'-,O(e3/~)) i t  i s  d e s c r i b e d  by c o m p l e t e  s p a t i a l  N a v i e r -  
S t o k e s  e q u a t i o n s  f o r  a n  i n c o m p r e s s i b l e  g a s .  On l i n e  OP a s p a t i a l  c o m p e n s a t i o n  r e g i m e  i s  
r e a l i z e d  f o r  f l o w  o v e r  i r r e g u l a r i t i e s  when t h e r e  i s  t r a n s f e r  o f  d i s t u r b a n c e s  upwards  t h r o u g h  
t h e  f l o w .  With  a , - ' O ( e  ~/~) and b , - , c ~ O ( e S / ~ )  ( p o i n t  P) a s p a t i a l  r e g i m e  i s  r e a l i z e d  f o r  f r e e  
r e a c t i o n  o f  f l o w  o v e r  i r r e g u l a r i t i e s .  On l i n e  PQ (a,'-'O(b~/~),-.,O(c~/S)) f l o w  o v e r  " t h i c k "  i r -  
r e g u l a r i t i e s  i s  d e s c r i b e d  by P r a n d t l  e q u a t i o n s  f o r  a s p a t i a l  b o u n d a r y  l a y e r  w i t h  p r e s c r i b e d  
p r e s s u r e  d i s t r i b u t i o n .  

For  wide  i r r e g u l a r i t i e s  ( c  > b) i n  b o u n d a r y  p r o b l e m s  t h e r e  i s  d e g e n e r a t i o n  a l o n g  t r a n s -  
v e r s e  c o o r d i n a t e  z ,  i . e . ,  t h e y  b r e a k  down i n t o  a s y s t e m  d e s c r i b i n g  d i s t u r b a n c e  o f  f l o w  in  
p l a n e  x ,  y and c o n t a i n i n g  c o o r d i n a t e  z as  a p a r a m e t e r ,  and i n t o  l i n e a r i z e d  e q u a t i o n s  f o r  
c o n s e r v a t i o n  o f  a t r a n s v e r s e  p u l s e .  

I n  t h e  c a s e  o f  n a r r o w  i r r e g u l a r i t i e s  ( c  < b) s p r e a d i n g  o f  gas  t o  t h e  s i d e s  becomes  a 
g o v e r n i n g  f a c t o r  and t h e r e  i s  d e g e n e r a t i o n  o f  b o u n d a r y  p r o b l e m  a l o n g  l o n g i t u d i n a l  c o o r d i n a t e  
x ,  i . e . ,  e v e r y w h e r e  t e r m s  w i t h  8p /Sx  o r  8~p /Sx  ~ a r e  d r o p p e d .  I n  v i e w  o f  t h i s  f o r  a l l  r e g i m e s  
o f  f l o w  o v e r  n a r r o w  i r r e g u l a r i t i e s  t h e r e  i s  a b s e n c e  o f  t r a n s f e r  o f  d i s t u r b a n c e s  upwards  
t h r o u g h  t h e  f l o w .  I n  a d d i t i o n ,  h e r e  t h e r e  i s  a b s e n c e  o f  t h e  d e p e n d e n c e  o f  s o l u t i o n s  on M~ 
even  in  c a s e s  when i t  d i s t u r b s  t h e  r e g i o n s  o f  u n i f o r m  r u n n i n g  f l o w .  
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Surfaces PD, i.e., a~O(s2/c) and PNCD, i.e., a.-~O(e2/b), separate irregUlarities for 
which disturbances of flow functions are created due to reaction of an irregularity with the 
boundary-wall part of a boundary layer on a plate, or with a uniform running flow. 

It may also be shown that surfaces a ~ O(~b~/~), aN O(c~/~), aN O(b ~) and a ~ O(bc) cut off 
regimes for flow over small surfaces for which pressure gradients 8p/Sx < 1 or 8p/Sz < 1 are 
small, and also convective or diffusion terms in Navier-Stokes equations are small (e.g., 
puSu/Sx < 1 or e2082u/Sy 2 < i) (these surfaces are not given in Fig. 4). 

A general classification scheme for regimes of spatial local flows is given in Fig. 5. 
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CALCULATION OF ELECTRON DENSITY IN THE VICINITY OF A BLUNT BODY WITHIN 

THE FRAMEWORK OF VARIOUS MODELS OF DIFFUSION IN HYPERSONIC FLOW OVER IT 

L. I. Petrova and V. A. Polyanskii 

The question of the influence of the choice of the diffusion model on the distribution of 
flow parameters in the problem of the flow of a hypersonic air stream over a blunt body is 
discussed on the basis of a numerical solution of the Navier-Stokes equation. 

The high-temperature air in the region of the shock layer between the surface of a body 
and the bow shock wave (SW) consists of a complicated, multicomponent, partially ionized gas 
mixture. The solution of the problem of the flow of such mixture over a body within the 
framework of the complete system of Navier-Stokes equations lies at the limit of the possi- 
bilities of modern computers. The question of the degree of complexity of the model which 
must be used to describe the multicomponent medium is very important from this point of view. 
In problems of hypersonic air flow over bodies one can construct a hierarchy of models, start- 
ing with the most complicated, in which one takes into account 11 components of the mixture 
reacting with each other (N~, 02 , NO, N, O, NO + , N~, O~, N +, O +, e), the nonequilibrium of 
the internal degrees of freedom, and processes of multicomponent diffusion, viscosity, and 
heat conduction for a sufficiently large number of approximations in Sonine polynomials for 
the coefficients of transfer of the charged components. The next simpler model has seven 
components (N2, 02, NO, O, N, NO + , e), in it the internal degrees of freedom are in equilib- 
rium, and transfer processes are taken into account within the framework of the complete 
system of Navier-Stokes equations. There can be further simplifications of the model, con- 
nected withdiscarding individual terms in the Navier-Stokes equations, as a result of which 
the type of system changes, with dividing the entire region of flow into subregions, in each 
of which simpler equations are used (Euler equations, boundary-layer equations), etc. And 
simplifications are also possible within the framework of any model. 

Besides the comparison of the results of the solution with experiment, the comparison 
with data obtained on the basis of a more complicated model can serve as a criterion for the 
correctness of the adopted assumptions. A solution has now been obtained within the frame- 
work of the seven-component model for the problem of air flow over a blunt body. In the 
velocity range of 4-6 km/sec at the pressure and densities corresponding to altitudes of 70- 
i00 km above sea level the seven-component model, in which the leading ionization process is 
associative ionization N + 0 ~ e + NO + , describes the properties of the medium sufficiently 
well. This model is still complicated for making mass calculations of flow over bodies, 
however, since each variant of the calculations consumes large amounts of computer time. 
Below we analyze the possibility of simplifications of the seven-component model of air 
through approximate allowance for the diffusional properties of the mixture. We consider 
the question of how the accuracy in assigning the cross sections of elastic collisions of 
particles of the gas mixture influences the distribution of concentrations of the charged 
components, and we also investigate the difference arising in the case when multicomponent 
diffusion is replaced by binary diffusion. In addition, the correctness of the standard 
assumption that the medium is quasi-neutral is analyzed on the basis of a calculation of the 
induced electric fields and the space charge in the vicinity of the body. Concrete results 
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